Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 665-686, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545970

RESUMO

Erythritol is a novel 4-carbon sugar alcohol produced by microbes in the presence of hyper-osmotic stress. It has excellent potential to serve as an alternative sugar for people with diabetes and also a platform compound for synthesizing various C4 compounds, such as 1, 3-butadiene, 1, 4-butanediol, 2, 5-dihydrofuran and so on. Compared with other polyols, the fermentative production of erythritol is more challenging. Yarrowia lipolytica is the preferred chassis of erythritol biosynthesis for its high-titer and high-productivity. At present, there are still some bottlenecks in the production of erythritol by Y. lipolytica, such as weak metabolic activity, abundant by-products, and low industrial attributes. Progress has been made in tailoring high version strains according to industrial needs. For example, the highest titer of erythritol produced by the metabolically engineered Y. lipolytica reached 196 g/L and 150 g/L, respectively, by using glucose or glycerol as the carbon sources. However, further improving its production performance becomes challenging. This review summarizes the research progress in the synthesis of erythritol by Y. lipolytica from the perspectives of erythritol producing strains, metabolic pathways, modular modifications, and auxiliary strategies to enhance the industrial properties of the engineered strain. Key nodes in the metabolic pathway and their combination strategies are discussed to guide the research on promoting the production of erythritol by Y. lipolytica.


Assuntos
Yarrowia , Humanos , Yarrowia/genética , Yarrowia/metabolismo , Eritritol/metabolismo , Engenharia Metabólica , Fermentação , Carbono/metabolismo
2.
Microb Cell Fact ; 23(1): 77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475794

RESUMO

BACKGROUND: Erythritol is a four-carbon polyol with an unclear role in metabolism of some unconventional yeasts. Its production has been linked to the osmotic stress response, but the mechanism of stress protection remains unclear. Additionally, erythritol can be used as a carbon source. In the yeast Yarrowia lipolytica, its assimilation is activated by the transcription factor Euf1. The study investigates whether this factor can link erythritol to other processes in the cell. RESULTS: The research was performed on two closely related strains of Y. lipolytica: MK1 and K1, where strain K1 has no functional Euf1. Cultures were carried out in erythritol-containing and erythritol-free media. Transcriptome analysis revealed the effect of Euf1 on the regulation of more than 150 genes. Some of these could be easily connected with different aspects of erythritol assimilation, such as: utilization pathway, a new potential isoform of transketolase, or polyol transporters. However, many of the upregulated genes have never been linked to metabolism of erythritol. The most prominent examples are the degradation pathway of branched-chain amino acids and the glyoxylate cycle. The high transcription of genes affected by Euf1 is still dependent on the erythritol concentration in the medium. Moreover, almost all up-regulated genes have an ATGCA motif in the promoter sequence. CONCLUSIONS: These findings may be particularly relevant given the increasing use of erythritol-induced promoters in genetic engineering of Y. lipolytica. Moreover, use of this yeast in biotechnological processes often takes place under osmotic stress conditions. Erythritol might be produce as a by-product, thus better understanding of its influence on cell metabolism could facilitate processes optimization.


Assuntos
Yarrowia , Yarrowia/metabolismo , Fatores de Transcrição/genética , Eritritol/metabolismo , Glicerol/metabolismo , Perfilação da Expressão Gênica , Carbono/metabolismo
3.
Mol Biotechnol ; 66(1): 56-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37014586

RESUMO

2-C-methyl-D-erythritol-phosphate cytidylyltransferase (MCT) is a key enzyme in the MEP pathway of monoterpene synthesis, catalyzing the generation of 4- (5'-pyrophosphate cytidine)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol-4-phosphate. We used homologous cloning strategy to clone gene, LiMCT, in the MEP pathway that may be involved in the regulation of floral fragrance synthesis in the Lilium oriental hybrid 'Sorbonne.' The full-length ORF sequence was 837 bp, encoding 278 amino acids. Bioinformatics analysis showed that the relative molecular weight of LiMCT protein is 68.56 kD and the isoelectric point (pI) is 5.12. The expression pattern of LiMCT gene was found to be consistent with the accumulation sites and emission patterns of floral fragrance monoterpenes in transcriptome data (unpublished). Subcellular localization indicated that the LiMCT protein is located in chloroplasts, which is consistent with the location of MEP pathway genes functioning in plastids to produce isoprene precursors. Overexpression of LiMCT in Arabidopsis thaliana affected the expression levels of MEP and MVA pathway genes, suggesting that overexpression of the LiMCT in A. thaliana affected the metabolic flow of C5 precursors of two different terpene synthesis pathways. The expression of the monoterpene synthase AtTPS14 was elevated nearly fourfold in transgenic A. thaliana compared with the control, and the levels of carotenoids and chlorophylls, the end products of the MEP pathway, were significantly increased in the leaves at full bloom, indicating that LiMCT plays an important role in regulating monoterpene synthesis and in the synthesis of other isoprene-like precursors in transgenic A. thaliana flowers. However, the specific mechanism of LiMCT in promoting the accumulation of isoprene products of the MEP pathway and the biosynthesis of floral monoterpene volatile components needs further investigation.


Assuntos
Arabidopsis , Butadienos , Hemiterpenos , Lilium , Fosfatos Açúcares , Lilium/genética , Lilium/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Monoterpenos/metabolismo , Eritritol/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas
4.
Yi Chuan ; 45(10): 904-921, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37872113

RESUMO

Combined mutagenesis is widely applied for the breeding of robust Yarrowia lipolytica used in the production of erythritol. However, the changes of genome after mutagenesis remains unclear. This study aimed to unravel the mechanism involved in the improved erythritol synthesis of CA20 and the evolutionary relationship between different Y. lipolytica by comparative genomics analysis. The results showed that the genome size of Y. lipolytica CA20 was 20,420,510 bp, with a GC content of 48.97%. There were 6330 CDS and 649 ncRNA (non-coding RNA) in CA20 genome. Average nucleotide identity (ANI) analysis showed that CA20 genome possessed high similarity (ANI > 99.50%) with other Y. lipolytica strains, while phylogenetic analysis displayed that CA20 was classified together with Y. lipolytica IBT 446 and Y. lipolytica H222. CA20 shared 5342 core orthologous genes with the 8 strains while harbored 65 specific genes that mainly participated in the substrate and protein transport processes. CA20 contained 166 genes coding for carbohydrate-active enzymes (CAZymes), which was more than that found in other strains (108-137). Notably, 4, 2, and 13 different enzymes belonging to glycoside hydrolases (GHs), glycosyltransferases (GTs), and carbohydrate esterases (CEs), respectively, were only found in CA20. The enzymes involved in the metabolic pathway of erythritol were highly conserved in Y. lipolytica, except for transaldolase (TAL1). In addition, the titer and productivity of erythritol by CA20 were 190.97 g/L and 1.33 g/L/h, respectively, which were significantly higher than that of WT5 wherein 128.61 g/L and 0.92 g/L/h were obtained (P< 0.001). Five frameshift mutation genes and 15 genes harboring nonsynonymous mutation were found in CA20 compared with that of WT5. Most of these genes were involved in the cell division, cell wall synthesis, protein synthesis, and protein homeostasis maintenance. These findings suggested that the genome of Y. lipolytica is conserved during evolution, and the variance of living environment is one important factor leading to genome divergence. The varied number of CAZymes existed in Y. lipolytica is one factor that contributes to the performance difference. The increased synthesis of erythritol by Y. lipolytica CA20 is correlated with the improvement of the stability of cell structure and internal environment. The results of this study provide a basis for the directional breeding of robust strains used in erythritol production.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Eritritol/metabolismo , Filogenia , Glicerol/metabolismo , Melhoramento Vegetal , Genômica
5.
Microb Biotechnol ; 16(9): 1858-1871, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449952

RESUMO

Erythritol is produced in yeasts via the reduction of erythrose into erythritol by erythrose reductases (ERs). However, the genes codifying for the ERs involved in this reaction have not been described in any Saccharomyces species yet. In our laboratory, we recently showed that, during alcoholic fermentation, erythritol is differentially produced by Saccharomyces cerevisiae and S. uvarum species, the latter being the largest producer. In this study, by using BLAST analysis and phylogenetic approaches the genes GRE3, GCY1, YPR1, ARA1 and YJR096W were identified as putative ERs in Saccharomyces cerevisiae Then, these genes were knocked out in our S. uvarum strain (BMV58) with higher erythritol biosynthesis compared to control S. cerevisiae wine strain, to evaluate their impact on erythritol synthesis and global metabolism. Among the mutants, the single deletion of GRE3 markedly impacts erythritol production, although ΔYPR1ΔGCY1ΔGRE3 was the combination that most decreased erythritol synthesis. Consistent with the increased production of fermentative by-products involved in redox balance in the Saccharomyces uvarum strain BMV58, erythritol synthesis increases at higher sugar concentrations, hinting it might be a response to osmotic stress. However, the expression of GRE3 in the S. uvarum strain was found to peak just before the start of the stationary phase, being consistent with the observation that erythritol increases at the start of the stationary phase, when there is low sugar in the medium and nitrogen sources are depleted. This suggests that GRE3 plays its primary function to help the yeast cells to maintain the redox balance during the last phases of fermentation.


Assuntos
Eritritol , Saccharomyces , Eritritol/metabolismo , Fermentação , Homeostase , Osmorregulação , Oxirredução , Filogenia , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Açúcares/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo
6.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37496194

RESUMO

Yarrowia lipolytica is an alternative yeast for heterologous protein production. Based on auto-cloning vectors, a set of 18 chromogenic cloning vectors was developed, each containing one of the excisable auxotrophic selective markers URA3ex, LYS5ex, and LEU2ex, and one of six different promoters: the constitutive pTEF, the phase dependent hybrid pHp4d, and the erythritol-inducible promoters from pEYK1 and pEYL1 derivatives. These vectors allowed to increase the speed of cloning of the gene of interest. In parallel, an improved new rProt recipient strain JMY8647 was developed by abolishing filamentation and introducing an auxotrophy for lysine (Lys-), providing an additional marker for genetic engineering. Using this cloning strategy, the optimal targeting sequence for Rhizopus oryzae ROL lipase secretion was determined. Among the eight targeting sequences, the SP6 signal sequence resulted in a 23% improvement in the lipase activity compared to that obtained with the wild-type ROL signal sequence. Higher specific lipase activities were obtained using hybrid erythritol-inducible promoters pHU8EYK and pEYL1-5AB, 1.9 and 2.2 times, respectively, when compared with the constitutive pTEF promoter. Two copy strains produce a 3.3 fold increase in lipase activity over the pTEF monocopy strain (266.7 versus 79.7 mU/mg).


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Rhizopus oryzae/metabolismo , Lipase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eritritol/metabolismo
7.
J Agric Food Chem ; 71(30): 11567-11578, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466300

RESUMO

While the expansion of the erythritol production industry has resulted in unprecedented production of yeast cells, it also suffers from a lack of effective utilization. ß-Carotene is a value-added compound that can be synthesized by engineered Yarrowia lipolytica. Here, we first evaluated the production performance of erythritol-producing yeast strains under two different morphologies and then successfully constructed a chassis with yeast-like morphology by deleting Mhy1 and Cla4 genes. Subsequently, ß-carotene synthesis pathway genes, CarRA and CarB from Blakeslea trispora, were introduced to construct the ß-carotene and erythritol coproducing Y. lipolytica strain ylmcc. The rate-limiting genes GGS1 and tHMG1 were overexpressed to increase the ß-carotene yield by 45.32-fold compared with the strain ylmcc. However, increased ß-carotene accumulation led to prolonged fermentation time; therefore, transporter engineering through overexpression of YTH1 and YTH3 genes was used to alleviate fermentation delays. Using batch fermentation in a 3 L bioreactor, this engineered Y. lipolytica strain produced erythritol with production, yield, and productivity values of 171 g/L, 0.56 g/g glucose, and 2.38 g/(L·h), respectively, with a concomitant ß-carotene yield of 47.36 ± 0.06 mg/g DCW. The approach presented here improves the value of erythritol-producing cells and offers a low-cost technique to obtain hydrophobic terpenoids.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , beta Caroteno/metabolismo , Eritritol/metabolismo , Reatores Biológicos , Fermentação , Engenharia Metabólica/métodos
9.
Sci Rep ; 13(1): 9129, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277427

RESUMO

The unconventional yeast Yarrowia lipolytica produces erythritol as an osmoprotectant to adapt to osmotic stress. In this study, the array of putative erythrose reductases, responsible for the conversion of d-erythrose to erythritol, was analyzed. Single knockout and multiple knockout strains were tested for their ability to produce polyols in osmotic stress conditions. Lack of six of the reductase genes does not affect erythritol significantly, as the production of this polyol is comparable to the control strain. Deletion of eight of the homologous erythrose reductase genes resulted in a 91% decrease in erythritol synthesis, a 53% increase in mannitol synthesis, and an almost 8-fold increase in arabitol synthesis as compared to the control strain. Additionally, the utilization of glycerol was impaired in the media with induced higher osmotic pressure. The results of this research may shed new light on the production of arabitol and mannitol from glycerol by Y. lipolytica and help to develop strategies for further modification in polyol pathways in these microorganisms.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Aldeído Redutase/genética , Glicerol/metabolismo , Eritritol/metabolismo , Manitol/metabolismo
10.
Adv Sci (Weinh) ; 10(14): e2207008, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36938858

RESUMO

Erythritol, one of the natural sugar alcohols, is widely used as a sugar substitute sweetener in food industries. Humans themselves are not able to catabolize erythritol and their gut microbes lack related catabolic pathways either to metabolize erythritol. Here, Escherichia coli (E. coli) is engineered to utilize erythritol as sole carbon source aiming for defined applications. First, the erythritol metabolic gene cluster is isolated and the erythritol-binding transcriptional repressor and its DNA-binding site are experimentally characterized. Transcriptome analysis suggests that carbohydrate metabolism-related genes in the engineered E. coli are overall upregulated. In particular, the enzymes of transaldolase (talA and talB) and transketolase (tktA and tktB) are notably overexpressed (e.g., the expression of tktB is improved by nearly sixfold). By overexpression of the four genes, cell growth can be increased as high as three times compared to the cell cultivation without overexpression. Finally, engineered E. coli strains can be used as a living detector to distinguish erythritol-containing soda soft drinks and can grow in the simulated intestinal fluid supplemented with erythritol. This work is expected to inspire the engineering of more hosts to respond and utilize erythritol for broad applications in metabolic engineering, synthetic biology, and biomedical engineering.


Assuntos
Eritritol , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Eritritol/metabolismo , Carbono , Fatores de Transcrição/genética , Engenharia Metabólica
11.
Biotechnol Adv ; 64: 108105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36736865

RESUMO

Sugar alcohols are polyols that are widely employed in the production of chemicals, pharmaceuticals, and food products. Chemical synthesis of polyols, however, is complex and necessitates the use of hazardous compounds. Therefore, the use of microbes to produce polyols has been proposed as an alternative to traditional synthesis strategies. Many biotechnological approaches have been described to enhancing sugar alcohols production and microbe-mediated sugar alcohol production has the potential to benefit from the availability of inexpensive substrate inputs. Among of them, microbe-mediated erythritol production has been implemented in an industrial scale, but microbial growth and substrate conversion rates are often limited by harsh environmental conditions. In this review, we focused on xylitol, mannitol, sorbitol, and erythritol, the four representative sugar alcohols. The main metabolic engineering strategies, such as regulation of key genes and cofactor balancing, for improving the production of these sugar alcohols were reviewed. The feasible strategies to enhance the stress tolerance of chassis cells, especially thermotolerance, were also summarized. Different low-cost substrates like glycerol, molasses, cellulose hydrolysate, and CO2 employed for producing these sugar alcohols were presented. Given the value of polyols as precursor platform chemicals that can be leveraged to produce a diverse array of chemical products, we not only discuss the challenges encountered in the above parts, but also envisioned the development of their derivatives for broadening the application of sugar alcohols.


Assuntos
Álcoois Açúcares , Açúcares , Álcoois Açúcares/metabolismo , Xilitol/metabolismo , Manitol/metabolismo , Eritritol/metabolismo
12.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771066

RESUMO

Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.


Assuntos
Fosfatos Açúcares , Humanos , Fosfatos Açúcares/metabolismo , Terpenos/farmacologia , Terpenos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Eritritol/metabolismo
13.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768662

RESUMO

The first enzyme, 1-Deoxy-D-xylulose-5-phosphate synthase (DXS), in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway for isoprenoid precursor biosynthesis has been reported to function differently according to species. However, the current state of knowledge about this gene family in Toona ciliata is limited. The TcDXS gene family was identified from the whole genome of T. ciliata by firstly using bioinformatics analysis. Then, the phylogenetic tree was built and the promoter cis-elements were predicted. Six DXS genes were identified and divided into three groups, which had similar domains and gene structure. They are located on five different chromosomes and encode products that do not vary much in size. An analysis of the cis-acting elements revealed that TcDXS genes possessed light, abiotic stress, and hormone responsive elements. Ultimately, TcDXS1/2/5 was cloned for an in-depth analysis of their subcellular localization and expression patterns. The subcellular localization results of TcDXS1/2/5 showed that they were located in the chloroplast envelope membranes. Based on tissue-specific analyses, TcDXS1/2/5 had the highest expression in mature leaves. Under Hypsipyla robusta stress, their different expressions indicated that these genes may have insect-resistance functions. This research provides a theoretical basis for further functional verification of TcDXSs in the future, and a new concept for breeding pest-resistant T. ciliata.


Assuntos
Toona , Transferases , Animais , Toona/metabolismo , Transferases/genética , Transferases/metabolismo , Filogenia , Melhoramento Vegetal , Óxido Nítrico Sintase/genética , Eritritol/metabolismo , Insetos/metabolismo
14.
Microb Cell Fact ; 22(1): 7, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635727

RESUMO

BACKGROUND: The oleaginous yeast Yarrowia lipolytica is increasingly used as a chassis strain for generating bioproducts. Several hybrid promoters with different strengths have been developed by combining multiple copies of an upstream activating sequence (UAS) associated with a TATA box and a core promoter. These promoters display either constitutive, phase-dependent, or inducible strong expression. However, there remains a lack of bidirectional inducible promoters for co-expressing genes in Y. lipolytica. RESULTS: This study built on our previous work isolating and characterizing the UAS of the erythritol-induced genes EYK1 and EYD1 (UAS-eyk1). We found an erythritol-inducible bidirectional promoter (BDP) located in the EYK1-EYL1 intergenic region. We used the BDP to co-produce YFP and RedStarII fluorescent proteins and demonstrated that the promoter's strength was 2.7 to 3.5-fold stronger in the EYL1 orientation compared to the EYK1 orientation. We developed a hybrid erythritol-inducible bidirectional promoter (HBDP) containing five copies of UAS-eyk1 in both orientations. It led to expression levels 8.6 to 19.2-fold higher than the native bidirectional promoter. While the BDP had a twofold-lower expression level than the strong constitutive TEF promoter, the HBDP had a 5.0-fold higher expression level when oriented toward EYL1 and a 2.4-fold higher expression level when oriented toward EYK1. We identified the optimal media for BDP usage by exploring yeast growth under microbioreactor conditions. Additionally, we constructed novel Golden Gate biobricks and a destination vector for general use. CONCLUSIONS: In this research, we developed novel bidirectional and hybrid bidirectional promoters of which expression can be fine-tuned, responding to the need for versatile promoters in the yeast Y. lipolytica. This study provides effective tools that can be employed to smoothly adjust the erythritol-inducible co-expression of two target genes in biotechnology applications. BDPs developed in this study have potential applications in the fields of heterologous protein production, metabolic engineering, and synthetic biology.


Assuntos
Yarrowia , Yarrowia/metabolismo , Eritritol/metabolismo , Biologia Sintética , Regiões Promotoras Genéticas , Engenharia Metabólica
15.
Assay Drug Dev Technol ; 20(5): 225-236, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35834649

RESUMO

Drug-resistant infections have become a serious threat to human health in the past two decades. Global Antimicrobial Surveillance (GLASS) in January 2018 reported widespread antibiotic resistance among 1.5 million people infected with bacteria across 22 countries. According to prominent economist Jim O'Neil, antimicrobial resistance is estimated to kill ∼10 million people affected by microorganisms each year by 2050. Even though multiple therapeutics are now available to treat the infections, more and more bacterial strains have acquired resistance to these treatments through various techniques. Moreover, the decrease in the pipeline of antibacterial medicines under clinical development has become a significant problem. In this scenario, the development of novel antibiotics that act on untapped pathways is necessary to combat the bacterial infections. Isoprenoid H (IspH) synthetase has become an attractive antibacterial target as there is no human homologue. IspH is an enzyme involved in methyl-d-erythritol phosphate (MEP) pathway of isoprenoid synthesis and is conserved in gram-negative bacteria, mycobacteria, and apicomplexans. Since, IspH is a novel therapeutic target, explorations are only just beginning, and despite the progress made in this area, no single IspH inhibitor is available in the market for therapeutic use. In this article, we have repurposed 35 immune boosters against IspH enzyme using methods such as extra-precision docking and Molecular Mechanics Generalized Born Surface Area (MMGBSA). Among them, 4'-fluorouridine was found to be active because of its glide score and significant binding affinity with IspH enzyme. Furthermore, this study requires more in vitro, in vivo, and molecular dynamics studies to support our findings.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Bactérias , Eritritol/metabolismo , Humanos , Terpenos/química , Terpenos/metabolismo , Terpenos/farmacologia , Nucleotídeos de Uracila
16.
J Indian Soc Pedod Prev Dent ; 40(1): 19-22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35439878

RESUMO

Background: Prevention of dental caries is important for nutrition and health of the child. Sucrose being considered an arch criminal, various substitutes are recommended. Xylitol is an artificial sweetener which cannot be metabolized by bacteria. Thus, it seems to be a promising method in prevention of dental caries. Materials and Methods: Fifty children between the age of 3-6 years were randomly divided into two groups; Group 1: Control group (without lollipops) and Group 2: Experimental group (with sugar substitute lollipops). The saliva sample was collected at four different time intervals, and pH of saliva was determined using universal pH indicator. Results: There was a significant drop in the pH after drinking sweetened beverages in both the groups, but there was a significant rise in pH after having xylitol + erythritol lollipops which almost returned to baseline after 15 min. Conclusion: Lollipops containing xylitol and erythritol can be used in small children and it has potential to increase salivary pH, thus not allowing the pH to fall below the critical value.


Assuntos
Cárie Dentária , Xilitol , Goma de Mascar , Criança , Pré-Escolar , Cárie Dentária/microbiologia , Eritritol/metabolismo , Eritritol/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Saliva/microbiologia , Streptococcus mutans , Edulcorantes , Xilitol/farmacologia
17.
Chemistry ; 28(30): e202200241, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35285984

RESUMO

IspG (also called GcpE) is an oxygen-sensitive [4Fe-4S] enzyme catalyzing the penultimate step of the methylerythritol phosphate (MEP) pathway, a validated target for drug development. It converts 2-C-methyl-d-erythritol-2,4-cyclo-diphosphate (MEcPP) into (E)-4-hydroxy-3-methyl-but-2-enyl-1-diphosphate (HMBPP). The reaction, assimilated to a reductive dehydration, involves redox partners responsible for the formal transfer of two electrons to substrate MEcPP. The 2-vinyl analogue of MEcPP was designed to generate conjugated species during enzyme catalysis, with the aim of providing new reactive centers to be covalently trapped by neighboring amino acid residues. The synthesized substrate analogue displayed irreversible inhibition towards IspG. Furthermore, we have shown that electron transfer occurs prior to inhibition; this might designate conjugated intermediates as probable affinity tags through covalent interaction at the catalytic site. This is the first report of an irreversible inhibitor of the IspG metalloenzyme.


Assuntos
Difosfatos , Eritritol , Domínio Catalítico , Transporte de Elétrons , Eritritol/metabolismo , Pirimidinas
18.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163484

RESUMO

Bacterial cryptic prophage (defective prophage) genes are known to drastically influence host physiology, such as causing cell growth arrest or lysis, upon expression. Many phages encode lytic proteins to destroy the cell envelope. As natural antibiotics, only a few lysis target proteins were identified. ydfD is a lytic gene from the Qin cryptic prophage that encodes a 63-amino-acid protein, the ectopic expression of which in Escherichia coli can cause nearly complete cell lysis rapidly. The bacterial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is responsible for synthesizing the isoprenoids uniquely required for sustaining bacterial growth. In this study, we provide evidence that YdfD can interact with IspG, a key enzyme involved in the MEP pathway, both in vivo and in vitro. We show that intact YdfD is required for the interaction with IspG to perform its lysis function and that the mRNA levels of ydfD increase significantly under certain stress conditions. Crucially, the cell lysis induced by YdfD can be abolished by the overexpression of ispG or the complementation of the IspG enzyme catalysis product methylerythritol 2,4-cyclodiphosphate. We propose that YdfD from the Qin cryptic prophage inhibits IspG to block the MEP pathway, leading to a compromised cell membrane and cell wall biosynthesis and eventual cell lysis.


Assuntos
Biocatálise , Eritritol/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Prófagos/metabolismo , Fosfatos Açúcares/metabolismo , Proteínas Virais/metabolismo , Sequência Conservada , Cisteína/química , Eritritol/metabolismo , Escherichia coli/ultraestrutura , Modelos Biológicos , Ligação Proteica , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Soluções , Estresse Fisiológico , Proteínas Virais/química
19.
J Biol Chem ; 298(1): 101468, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896149

RESUMO

Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context. We show here that inducible knockdown of T. gondii ferredoxin results in progressive inhibition of growth and eventual parasite death. Surprisingly, this phenotype is not accompanied by ultrastructural changes in the apicoplast or overall cell morphology. The knockdown of ferredoxin was instead associated with a dramatic decrease in cellular levels of the last two metabolites in isoprenoid biosynthesis, 1-hydroxy-2-methyl-2-(E)- butenyl-4-pyrophosphate, and isomeric dimethylallyl pyrophosphate/isopentenyl pyrophosphate. Ferredoxin depletion was also observed to impair gliding motility, consistent with isoprenoid metabolites being important for dolichol biosynthesis, protein prenylation, and modification of other proteins involved in motility. Significantly, pharmacological inhibition of isoprenoid synthesis of the host cell exacerbated the impact of ferredoxin depletion on parasite replication, suggesting that the slow onset of parasite death after ferredoxin depletion is because of isoprenoid scavenging from the host cell and leading to partial compensation of the depleted parasite metabolites upon ferredoxin knockdown. Overall, these findings show that ferredoxin has an essential physiological function as an electron donor for the 2C-methyl-D-erythritol 4-phosphate pathway and is a potential drug target for apicomplexan parasites.


Assuntos
Apicoplastos , Ferredoxinas , Proteínas Ferro-Enxofre , Proteínas de Protozoários , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Vias Biossintéticas , Difosfatos/metabolismo , Elétrons , Eritritol/análogos & derivados , Eritritol/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
20.
ChemMedChem ; 17(5): e202100679, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918860

RESUMO

The enzymes of the 2-C-methylerythritol-d-erythritol 4-phosphate (MEP) pathway (MEP pathway or non-mevalonate pathway) are responsible for the synthesis of universal precursors of the large and structurally diverse family of isoprenoids. This pathway is absent in humans, but present in many pathogenic organisms and plants, making it an attractive source of drug targets. Here, we present a high-throughput screening approach that led to the discovery of a novel fragment hit active against the third enzyme of the MEP pathway, PfIspD. A systematic SAR investigation afforded a novel chemical structure with a balanced activity-stability profile (16). Using a homology model of PfIspD, we proposed a putative binding mode for our newly identified inhibitors that sets the stage for structure-guided optimization.


Assuntos
Eritritol , Fosfatos Açúcares , Eritritol/análogos & derivados , Eritritol/química , Eritritol/metabolismo , Eritritol/farmacologia , Humanos , Fosfatos Açúcares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...